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1. Introduction 
Database management systems 

(DBMS) provide higher level user 
support than conventional operating 
systems. The DBMS designer must 
work in the context of the OS he/she 
is faced with. Different operating 
systems are designed for different 
use. In this paper we examine several 
popular operating system services 
and indicate whether they are appro- 
priate for support of database man- 
agement functions. Often we will see 
that the wrong service is provided or 
that severe performance problems 
exist. When possible, we offer some 
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SUMMARY: Several operating system services are examined 
with a view toward their applicability to support of database 
management functions. These services include buffer pool 
management; the file system; scheduling, process manage- 
ment, and interprocess communication; and consistency 
control. 

suggestions concerning improve- 
ments. In the next several sections 
we look at the services provided by 
buffer pool management; the file sys- 
tem; scheduling, process manage- 
ment, and interprocess communica- 
tion; and consistency control. We 
then conclude with a discussion of 
the merits of including all files in a 
paged virtual memory. 

The examples in this paper are 
drawn primarily from the UNIX op- 
erating system [17] and the INGRES 
relational database system [19, 20] 
which was designed for use with 
UNIX. Most of the points made for 
this environment have general appli- 
cability to other operating systems 
and data managers. 

2. Buffer Pool Management 
Many modern operating systems 

provide a main memory cache for 
the file system. Figure 1 illustrates 
this service. In brief, UNIX provides 
a buffer pool whose size is set when 
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the operating system is compiled. 
Then, all file I /O is handled through 
this cache. A file read (e.g., read X 
in Figure 1) returns data directly 
from a block in the cache, if possible; 
otherwise, it causes a block to be 
"pushed" to disk and replaced by the 
desired block. In Figure 1 we show 
block Y being pushed to make room 
for block X. A file write simply 
moves data into the cache; at some 
later time the buffer manager writes 
the block to the disk. The UNIX 
buffer manager used the popular 
LRU [15] replacement strategy. Fi- 
nally, when UNIX detects sequential 
access to a file, it prefetches blocks 
before they are requested. 

Conceptually, this service is de- 
sirable because blocks for which 
there is so-called locality of reference 
[15, 18] will remain in the cache over 
repeated reads and writes. However, 
the problems enumerated in the fol- 
lowing subsections arise in using this 
service for database management. 
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Fig. 1. Structure o f  a Cache. 

2.1 Per formance  
The overhead to fetch a block 

from the buffer pool manager usu- 
ally includes that of  a system call and 
a core-to-core move. For  UNIX on 
a PDP-11/70 the cost to fetch 512 
bytes exceeds 5,000 instructions. To 
fetch 1 byte from the buffer pool 
requires about 1,800 instructions. It 
appears that these numbers are 
somewhat higher for UNIX than 
other contemporary operating sys- 
tems. Moreover, they can be cut 
somewhat for VAX 11/780 hardware 
[10]. It is hoped that this trend to- 
ward lower overhead access will con- 
tinue. 

However, many DBMSs includ- 
ing INGRES [20] and System R [4] 
choose to put a DBMS managed 
buffer pool in user space to reduce 
overhead. Hence, each of  these sys- 
tems has gone to the trouble of  con- 
structing its own buffer pool man- 
ager to enhance performance. 

In order for an operating system 
(OS) provided buffer pool manager 
to be attractive, the access overhead 
must be cut to a few hundred instruc- 
tions. The trend toward providing 
the file system as a part of  shared 

virtual memory (e.g., Pilot [16]) may 
provide a solution to this problem. 
This topic is examined in detail in 
Section 6. 

2.2  LRU Rep lacement  
Although the folklore indicates 

that LRU is a generally good tactic 
for buffer management, it appears to 
perform only marginally in a data- 
base environment. Database access 
in INGRES is a combination of: 

(1) sequential access to blocks 
which will not be rereferenced; 

(2) sequential access to blocks 
which will be cyclically rerefer- 
enced; 

(3) random access to blocks which 
will not be referenced again; 

(4) random access to blocks for 
which there is a nonzero prob- 
ability of  rereference. 

Although LRU works well for case 
4, it is a bad strategy for other situ- 
ations. Since a DBMS knows which 
blocks are in each category, it can 
use a composite strategy. For  case 4 
it should use LRU while for 1 and 3 
it should use toss immediately. For 
blocks in class 3 the reference pattern 
is 1, 2, 3 . . . . .  n, 1, 2, 3 . . . . .  Clearly, 
LRU is the worst possible replace- 
ment algorithm for this situation. 
Unless all n pages can be kept in the 
cache, the strategy should be to toss 
immediately. Initial studies [9] sug- 
gest that the miss ratio can be cut 
10-15% by a DBMS specific algo- 
rithm. 

In order for an OS to provide 
buffer management, some means 
must be found to allow it to accept 
"advice" from an application pro- 
gram (e.g., a DBMS) concerning the 
replacement strategy. Designing a 
clean buffer management interface 
with this feature would be an inter- 
esting problem. 

2.3  Prefetch 
Although UNIX correctly pre- 

fetches pages when sequential access 
is detected, there are important in- 
stances in which it fails. 

Except in rare cases INGRES at 
(or very shortly after) the beginning 
of  its examination of  a block knows 

exactly which block it will access 
next. Unfortunately, this block is not 
necessarily the next one in logical file 
order. Hence, there is no way for an 
OS to implement the correct prefetch 
strategy. 

2.4  Crash Recovery  
An important DBMS service is to 

provide recovery from hard and soft 
crashes. The desired effect is for a 
unit of  work (a transaction) which 
may be quite large and span multiple 
files to be either completely done or 
look like it had never started. 

The way many DBMSs provide 
this service is to maintain an inten- 
tions list. When the intentions list is 
complete, a commit flag is set. The 
last step of  a transaction is to process 
the intentions list making the actual 
updates. The DBMS makes the last 
operation idempotent (i.e., it gener- 
ates the same final outcome no mat- 
ter how many times the intentions 
list is processed) by careful program- 
ming. The general procedure is de- 
scribed in [6, 13]. An alternate pro- 
cess is to do updates as they are 
found and maintain a log of  before 
images so that backout is possible. 

During recovery from a crash the 
commit flag is examined. If  it is set, 
the DBMS recovery utility processes 
the intentions list to correctly install 
the changes made by updates in 
progress at the time of  the crash. If  
the flag is not set, the utility removes 
the intentions list, thereby backing 
out the transaction. The impact of  
crash recovery on the buffer pool 
manager is the following. 

The page on which the commit 
flag exists must be forced to disk 
after all pages in the intentions list. 
Moreover, the transaction is not re- 
liably committed until the commit 
flag is forced out to the disk, and no 
response can be given to the person 
submitting the transaction until this 
time. 

The service required from an OS 
buffer manager is a selected force out 
which would push the intentions list 
and the commit flag to disk in the 
proper order. Such a service is not 
present in any buffer manager 
known to us. 
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2.5 Summary 
Although it is possible to provide 

an OS buffer manager with the re- 
quired features, none currently ex- 
ists, at least to our knowledge. De- 
signing such a facility with prefetch 
advice, block management advice, 
and selected force out would be an 
interesting exercise. It would be of  
interest in the context of  both a 
paged virtual memory and an ordi- 
nary file system. 

The strategy used by most 
DBMSs (for example, System R [4] 
and IMS [8]) is to maintain a sepa- 
rate cache in user space. This buffer 
pool is managed by a DBMS specific 
algorithm to circumvent the prob- 
lems mentioned in this section. The 
result is a "not quite right" service 
provided by the OS going unused 
and a comparable application spe- 
cific service being provided by the 
DBMS. Throughout  this paper we 
will see variations on this theme in 
several service delivery areas. 

3. The File System 
The file system provided by 

UNIX supports objects (files) which 
are character arrays of  dynamically 
varying size. On top of  this abstrac- 
tion, a DBMS can provide whatever 
higher level objects it wishes. 

This is one of  two popular ap- 
proaches to file systems; the second 
is to provide a record management 
system inside the OS (e.g., RMS-11 
for DEC machines or Enscribe for 
Tandem machines). In this approach 
structured files are provided (with or 
without variable length records). 
Moreover, efficient access is often 
supported for fetching records cor- 
responding to a user supplied value 
(or key) for a designated field or 
fields. Multilevel directories, hash- 
ing, and secondary indexes are often 
used to provide this service. 

The point to be made in this sec- 
tion is that the second service, which 
is what a DBMS wants, is not always 
efficient when constructed on top of  

414 

a character array object. The follow- 
ing subsections explain why. 

3.1 Physical Contiguity 
The character array object can 

usually be expanded one block at a 
time. Often the result is blocks of  a 
given file scattered over a disk vol- 
ume. Hence, the next logical block in 
a file is not necessarily physically 
close to the previous one. Since a 
DBMS does considerable sequential 
access, the result is considerable disk 
arm movement. 

The desired service is for blocks 
to be stored physically contiguous 
and a whole collection to be read 
when sequential access is desired. 
This naturally leads a DBMS to pre- 
fer a so-called extent based file sys- 
tem (e.g., VSAM [11]) to one which 
scatters blocks. Of  course, such files 
must grow an extent at a time rather 
than a block at a time. 

3.2 Tree Structured File Systems 
UNIX implements two services 

by means of  data structures which 
are trees. The blocks in a given file 
are kept track of  in a tree (of indirect 
blocks) pointed to by a file control 
block (/-node). Second, the files in a 
given mounted file system have a 
user visible hierarchical structure 
composed of  directories, subdirecto- 
ties, etc. This is implemented by a 
second tree. A DBMS such as 
INGRES  then adds a third tree 
structure to support keyed access via 
a multilevel directory structure (e.g., 
ISAM [7], B-trees [1, 12], VSAM 
[11], etc.). 

Clearly, one tree with all three 
kinds of  information is more efficient 
than three separately managed trees. 
The extra overhead for three sepa- 
rate trees is probably substantial. 

3.3 Summary 
It is clear that a character array 

is not a useful object to a DBMS. 
Rather, it is the abstraction presum- 
ably desired by language processors, 
editors, etc. Instead of  providing rec- 
ords management on top of  character 
arrays, it is possible to do the con- 
verse; the only issue is one of  effi- 
ciency. Moreover, editors can possi- 
bly use records management struc- 

Communica t ions  
o f  
the AC M 

tures as efficiently as those they cre- 
ate themselves [2]. It is our feeling 
that OS designers should contem- 
plate providing DBMS facilities as 
lower level objects and character ar- 
rays as higher level ones. This phi- 
losophy has already been presented 
[5]. 

4. Scheduling, Process 
Management, and Interprocess 
Communication 

Often, the simplest way to orga- 
nize a multiuser database system is 
to have one OS process per user; i.e., 
each concurrent database user runs 
in a separate process. It is hoped that 
all users will share the same copy of  
the code segment of  the database 
system and perhaps one or more data 
segments. In particular, a DBMS 
buffer pool and lock table should be 
handled as a shared segment. The 
above structure is followed by Sys- 
tem R and, in part, by INGRES.  
Since UNIX has no shared data seg- 
ments, INGRES must put the lock 
table inside the operating system and 
provide buffering private to each 
user. 

The alternative organization is to 
allocate one run-time database pro- 
cess which acts as a server.  A l l  c o n -  

current users send messages to this 
server with work requests. The one 
run-time server schedules requests 
through its own mechanisms and 
may support its own multitasking 
system. This organization is followed 
by Enscribe [21]. Figure 2 shows 
both possibilities. 

Although Lauer [14] points out 
that the two methods are equally 
viable in a conceptual sense, the de- 
sign of  most operating systems 
strongly favors the first approach. 
For  example, UNIX contains a mes- 
sage system (pipes) which is incom- 
patible with the notion of  a server 
process. Hence, it forces the use of  
the first alternative. There are at least 
two problems with the process-per- 
user approach. 

4.1 Performance 
Every time a run-time database 

process issues an I /O  request that 
cannot be satisfied by data in the 
buffer pool, a task switch is inevita- 
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Fig. 2. Two Approaches to Organizing a Multiuser Database System. 

ble. The DBMS suspends while wait- 
ing for required data and another 
process is run. It is possible to make 
task switches very efficiently, and 
some operating systems can perform 
a task switch in a few hundred in- 
structions. However, many operating 
systems have "large" processes, i.e., 
ones with a great deal of  state infor- 
mation (e.g., accounting) and a so- 
phisticated scheduler. This tends to 
cause task switches costing a thou- 
sand instructions or more. This is a 
high price to pay for a buffer pool 
miss. 

4.2 Critical Sections 
Blasgen [3] has pointed out that 

some DBMS processes have critical 
sections. If  the buffer pool is a shared 
data segment, then portions of  the 
buffer pool manager are necessarily 
critical sections. System R handles 
critical sections by setting and releas- 
ing short-term locks which basically 
simulate semaphores. A problem 
arises if the operating system sched- 
uler deschedules a database process 
while it is holding such a lock. All 
other database processes cannot ex- 
ecute very long without accessing the 
buffer pool. Hence, they quickly 
queue up behind the locked resource. 
Although the probability of  this oc- 
curring is low, the resulting convoy 
[3] has a devastating effect on per- 
formance. 
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As a result of  these two problems 
with the process-per-user model, one 
might expect the server model to be 
especially attractive. The following 
subsection explores this point of  
view. 

4.3 The Server Model 
A server model becomes viable if 

the operating system provides a mes- 
sage facility which allows n processes 
to originate messages to a single des- 
tination process. However, such a 
server must do its own scheduling 
and multitasking. This involves a 
painful duplication of  operating sys- 
tem facilities. In order to avoid such 
duplication, one must resort to the 
following tactics. 

One can avoid multitasking and 
a scheduler by a first-come-first- 
served server with no internal paral- 
lelism. A work request would be read 
from the message system and exe- 
cuted to completion before the next 
one was started. This approach 
makes little sense if there is more 
than one physical disk. Each work 
request will tend to have one disk 
read outstanding at any instant. 
Hence, at most one disk will be active 
with a non-multitasking server. Even 
with a single disk, a long work re- 
quest will be processed to completion 
while shorter requests must wait. The 
penalty on average response time 
may be considerable [18]. 
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To achieve internal parallelism 
yet avoid multitasking, one could 
have user processes send work re- 
quests to one of  perhaps several com- 
mon servers as noted in Figure 3. 
However, such servers would have to 
share a lock table and are only 
slightly different from the shared 
code process-per-user model. Alter- 
nately, one could have a collection 
of  servers, each of  which would send 
low-level requests to a group of  disk 
processes which actually peform the 
I /O  and handle locking as suggested 
in Figure 4. A disk process would 
process requests in first-in-first-out 
order. Although this organization 
appears potentially desirable, it still 
may have the response time penalty 
mentioned above. Moreover, it re- 
suits in one message per I /O  request. 
In reality one has traded a task 
switch per I / 0  for a message per 
I /O; the latter may turn out to be 
more expensive than the former. In 
the next subsection, we discuss mes- 
sage costs in more detail. 

4.4 Performance of Message 
Systems 

Although we have never been of- 
fered a good explanation of  why 
messages are so expensive, the fact 
remains that in most operating sys- 
tems the cost for a round-trip mes- 
sage is several thousand instructions. 
For  example, in PDP-11/70 UNIX 
the number is about 5,000. As a re- 
suit, care must be exercised in a 
DBMS to avoid overuse of  a facility 
that is not cheap. Consequently, vi- 
able DBMS organizations will some- 
times be rejected because of  exces- 
sive message overhead. 

4.5 Summary 
There appears to be no way out 

of  the scheduling dilemma; both the 
server model and the individual pro- 
cess model seem unattractive. The 
basic problem is at least, in part, the 
overhead in some operating systems 
of  task switches and messages. Either 
operating system designers must 
make these facilities cheaper or pro- 
vide special fast path functions for 
DBMS consumers. I f  this does not 
happen, DBMS designers will pre- 
sumably continue the present prac- 
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tice: implementing their own multi- 
tasking, scheduling, and message 
systems entirely in user space. The 
result is a "mini" operating system 
running in user space in addition to 
a DBMS. 

One ultimate solution to task- 
switch overhead might be for an op- 
erating system to create a special 
scheduling class for the DBMS and 
other "favored" users. Processes in 
this class would never be forcibly 
descheduled but might voluntarily 
relinquish the CPU at appropriate 
intervals. This would solve the con- 
voy problem mentioned in Section 
4.2. Moreover, such special processes 
might also be provided with a fast 
path through the task switch/sched- 
uler loop to pass control to one of 
their sibling processes. Hence, a 
DBMS process could pass control to 
another DBMS process at low over- 
head. 

5. Consistency Control 
The services provided by an op- 

erating system in this area include 
the ability to lock objects for shared 
or exclusive access and support for 
crash recovery. Although most op- 
erating systems provide locking for 
files, there are fewer which support 
finer granularity locks, such as those 
on pages or records. Such smaller 
locks are deemed essential in some 
database environments. 

Moreover, many operating sys- 
tems provide some cleanup after 
crashes. If they do not offer support 
for database transactions as dis- 
cussed in Section 2.4, then a DBMS 
must provide transaction crash re- 
covery on top of whatever is sup- 
plied. 

It has sometimes been suggested 
that both concurrency control and 
crash recovery, for transactions be 
provided entirely inside the operat- 
ing system (e.g., [13]). Conceptually, 
they should be at least as efficient as 
if provided in user space. The only 
problem with this approach is buffer 
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management. If a DBMS provides 
buffer management in addition to 
whatever is supplied by the operating 
system, then transaction manage- 
ment by the operating system is im- 
pacted as discussed in the following 
subsections. 

5.1 Commit Point 

When a database transaction 
commits, a user space buffer man- 
ager must ensure that all appropriate 
blocks are flushed and a commit de- 
livered to the operating system. 
Hence, the buffer manager cannot be 
immune from knowledge of trans- 
actions, and operating system func- 
tions are duplicated. 

5.2 Ordering Dependencies 
Consider the following employee 

data: 

Empname Salary Manager 
Smith 10,000 Brown 
Jones 9,000 None 
Brown 11,000 Jones 

and the update which gives a 20% 
pay cut to all employees who earn 
more than their managers. Presum- 
ably, Brown will be the only em- 
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Fig. 4. Disk Server Structure. 

ployee to receive a decrease, al- 
though there are alternative semantic 
definitions. 

Suppose the DBMS updates the 
data set as it finds "overpaid" em- 
ployees, depending on the operating 
system to provide backout or re- 
cover-forward on crashes. If so, 
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Brown might be updated before 
Smith was examined, and as a result, 
Smith would also receive the pay cut. 
It is clearly undesirable to have the 
outcome of an update depend on the 
order of  execution. 

If  the operating system maintains 
the buffer pool and an intentions list 
for crash recovery, it can avoid this 
problem [19]. However, if there is a 
buffer pool manager in user space, it 
must maintain its own intentions list 
in order to properly process this up- 
date. Again, operating system facili- 
ties are being duplicated. 

5.3 Summary 
It is certainly possible to have 

buffering, concurrency control, and 
crash recovery all provided by the 
operating system. In order for the 
system to be successful, however, the 
performance problems mentioned in 
Section 2 must be overcome. It is 
also reasonable to consider having 
all 3 services provided by the DBMS 
in user space. However, if buffering 
remains in user space and consis- 
tency control does not, then much 
code duplication appears inevitable. 
Presumably, this will cause perform- 
ance problems in addition to in- 
creased human effort. 

6. Paged Virtual Memory 

It is often claimed that the appro- 
priate operating system tactic for 
database management support is to 
bind files into a user's paged virtual 
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address space. In Figure 5 we show 
the address space of  a process con- 
taining code to be executed, data that 
the code uses, and the files F1 and 
F2. Such files can be referenced by 
a program as if they are program 
variables. Consequently, a user never 
needs to do explicit reads or writes; 
he can depend on the paging facili- 
ties of  the OS to move his file blocks 
into and out of main memory. Here, 
we briefly discuss the problems in- 
herent in this approach. 

6.1 Large Files 

Any virtual memory scheme 
must handle files which are large 
objects. Popular paging hardware 
creates an overhead of 4 bytes per 
4,096-byte page. Consequently, a 
100M-byte file will have an overhead 
of 100K bytes for the page table. 
Although main memory is decreas- 
ing in cost, it may not be reasonable 
to assume that a page table of this 
size is entirely resident in primary 
memory. Therefore, there is th e pos- 
sibility that an I /O operation will 
induce two page faults: one for the 
page containing the page table for 
the data in question and one on the 
data itself. To avoid the second fault, 
one must wire down a large page 
table in main memory. 

Conventional file systems include 
the information contained in the 
page table in a file control block. 
Especially in extent-based file sys- 
tems, a very compact representation 
of this information is possible. A run 
of  1,000 consecutive blocks can be 
represented as a starting block and a 
length field. However, a page table 
for this information would store each 
of the 1,000 addresses even though 
each differs by just one from its pred- 
ecessor. Consequently, a file control 
block is usually made main memory 
resident at the time the file is opened. 
As a result, the second I /O  need 
never be paid. 

The alternative is to bind chunks 
of a file into one's address space. Not 
only does this provide a multiuser 
DBMS with a substantial bookkeep- 
ing problem concerning whether 
needed data is currently addressable, 
but it also may require a number of 
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bind-unbind pairs in a transaction. 
Since the overhead of  a bind is likely 
to be comparable to that of a file 
open, this may substantially slow 
down performance. 

It is an open question whether or 
not novel paging organizations can 
assist in solving the problems men- 
tioned in this section. 

6.2 Buffering 
All of the problems discussed in 

Section 2 concerning buffering (e.g., 
prefetch, non-LRU management, 
and selected force out) exist in a 
paged virtual memory context. How 
they can be cleanly handled in this 
context is another unanswered ques- 
tion. 

7. Conclusions 
The bottom line is that operating 

system services in many existing sys- 
tems are either too slow or inappro- 
pilate. Current DBMSs usually pro- 
vide their own and make little or no 
use of  those offered by the operating 
system. It is important that future 
operating system designers become 
more sensitive to DBMS needs. 

A DBMS would prefer a small 
efficient operating system with only 
desired services. Of those currently 
available, the so-called real-time op- 
erating systems which efficiently 
provide minimal facilities come clos- 
est to this ideal. On the other hand, 
most general-purpose operating sys- 
tems offer all things to all people at 
much higher overhead. It is our hope 
that future operating systems will be 
able to provide both sets of services 
in one environment. 
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