
COMPUTING
PRACTICES

Operating System Support
for Database Management

Michael Stonebraker
University of California, Berkeley

1. Introduction
Database management systems

(DBMS) provide higher level user
support than conventional operating
systems. The DBMS designer must
work in the context of the OS he/she
is faced with. Different operating
systems are designed for different
use. In this paper we examine several
popular operating system services
and indicate whether they are appro-
priate for support of database man-
agement functions. Often we will see
that the wrong service is provided or
that severe performance problems
exist. When possible, we offer some

Permission to copy without fee all or part of
this material is granted provided that the cop-
ies are not made or distributed for direct
commercial advantage, the ACM copyright
notice and the title of the publication and its
"date appear, and notice is given that copying
is by permission of the Association for Com-
puting Machinery. To copy otherwise, or to
republish, requires a fee and/or specific per-
mission.
This research was sponsored by U.S. Air
Force Office of Scientific Research Grant 78-
3596, U.S. Army Research Office Grant
DAAG29-76-G-0245, Naval Electronics Sys-
tems Command Contract N00039-78-G-0013,
and National Science Foundation Grant
MCS75-03839-A01.
Key words and phrases: database manage-
ment, operating systems, buffer management,
file systems, scheduling, interprocess commu-
nication
CR Categories: 3.50, 3.70, 4.22, 4.33, 4.34, 4.35
Author's address: M. Stonebraker, Dept . of
Electrical Engineering and Computer Sci-
ences, University of California, Berkeley, CA
94720.
© 1981 ACM 0001-0782/81/0700-0412 $00.75.

412

SUMMARY: Several operating system services are examined
with a view toward their applicability to support of database
management functions. These services include buffer pool
management; the file system; scheduling, process manage-
ment, and interprocess communication; and consistency
control.

suggestions concerning improve-
ments. In the next several sections
we look at the services provided by
buffer pool management; the file sys-
tem; scheduling, process manage-
ment, and interprocess communica-
tion; and consistency control. We
then conclude with a discussion of
the merits of including all files in a
paged virtual memory.

The examples in this paper are
drawn primarily from the UNIX op-
erating system [17] and the INGRES
relational database system [19, 20]
which was designed for use with
UNIX. Most of the points made for
this environment have general appli-
cability to other operating systems
and data managers.

2. Buffer Pool Management
Many modern operating systems

provide a main memory cache for
the file system. Figure 1 illustrates
this service. In brief, UNIX provides
a buffer pool whose size is set when

Communications
of
the ACM

the operating system is compiled.
Then, all file I /O is handled through
this cache. A file read (e.g., read X
in Figure 1) returns data directly
from a block in the cache, if possible;
otherwise, it causes a block to be
"pushed" to disk and replaced by the
desired block. In Figure 1 we show
block Y being pushed to make room
for block X. A file write simply
moves data into the cache; at some
later time the buffer manager writes
the block to the disk. The UNIX
buffer manager used the popular
LRU [15] replacement strategy. Fi-
nally, when UNIX detects sequential
access to a file, it prefetches blocks
before they are requested.

Conceptually, this service is de-
sirable because blocks for which
there is so-called locality of reference
[15, 18] will remain in the cache over
repeated reads and writes. However,
the problems enumerated in the fol-
lowing subsections arise in using this
service for database management.

July 1981
Volume 24
Number 7

read X

1
main memory [

cache]

D

® (9

I - ' - "~ ' /
disk I 3

Fig. 1. Structure o f a Cache.

2.1 Per formance
The overhead to fetch a block

from the buffer pool manager usu-
ally includes that of a system call and
a core-to-core move. For UNIX on
a PDP-11/70 the cost to fetch 512
bytes exceeds 5,000 instructions. To
fetch 1 byte from the buffer pool
requires about 1,800 instructions. It
appears that these numbers are
somewhat higher for UNIX than
other contemporary operating sys-
tems. Moreover, they can be cut
somewhat for VAX 11/780 hardware
[10]. It is hoped that this trend to-
ward lower overhead access will con-
tinue.

However, many DBMSs includ-
ing INGRES [20] and System R [4]
choose to put a DBMS managed
buffer pool in user space to reduce
overhead. Hence, each of these sys-
tems has gone to the trouble of con-
structing its own buffer pool man-
ager to enhance performance.

In order for an operating system
(OS) provided buffer pool manager
to be attractive, the access overhead
must be cut to a few hundred instruc-
tions. The trend toward providing
the file system as a part of shared

virtual memory (e.g., Pilot [16]) may
provide a solution to this problem.
This topic is examined in detail in
Section 6.

2.2 LRU Rep lacement
Although the folklore indicates

that LRU is a generally good tactic
for buffer management, it appears to
perform only marginally in a data-
base environment. Database access
in INGRES is a combination of:

(1) sequential access to blocks
which will not be rereferenced;

(2) sequential access to blocks
which will be cyclically rerefer-
enced;

(3) random access to blocks which
will not be referenced again;

(4) random access to blocks for
which there is a nonzero prob-
ability of rereference.

Although LRU works well for case
4, it is a bad strategy for other situ-
ations. Since a DBMS knows which
blocks are in each category, it can
use a composite strategy. For case 4
it should use LRU while for 1 and 3
it should use toss immediately. For
blocks in class 3 the reference pattern
is 1, 2, 3 n, 1, 2, 3 Clearly,
LRU is the worst possible replace-
ment algorithm for this situation.
Unless all n pages can be kept in the
cache, the strategy should be to toss
immediately. Initial studies [9] sug-
gest that the miss ratio can be cut
10-15% by a DBMS specific algo-
rithm.

In order for an OS to provide
buffer management, some means
must be found to allow it to accept
"advice" from an application pro-
gram (e.g., a DBMS) concerning the
replacement strategy. Designing a
clean buffer management interface
with this feature would be an inter-
esting problem.

2.3 Prefetch
Although UNIX correctly pre-

fetches pages when sequential access
is detected, there are important in-
stances in which it fails.

Except in rare cases INGRES at
(or very shortly after) the beginning
of its examination of a block knows

exactly which block it will access
next. Unfortunately, this block is not
necessarily the next one in logical file
order. Hence, there is no way for an
OS to implement the correct prefetch
strategy.

2.4 Crash Recovery
An important DBMS service is to

provide recovery from hard and soft
crashes. The desired effect is for a
unit of work (a transaction) which
may be quite large and span multiple
files to be either completely done or
look like it had never started.

The way many DBMSs provide
this service is to maintain an inten-
tions list. When the intentions list is
complete, a commit flag is set. The
last step of a transaction is to process
the intentions list making the actual
updates. The DBMS makes the last
operation idempotent (i.e., it gener-
ates the same final outcome no mat-
ter how many times the intentions
list is processed) by careful program-
ming. The general procedure is de-
scribed in [6, 13]. An alternate pro-
cess is to do updates as they are
found and maintain a log of before
images so that backout is possible.

During recovery from a crash the
commit flag is examined. If it is set,
the DBMS recovery utility processes
the intentions list to correctly install
the changes made by updates in
progress at the time of the crash. If
the flag is not set, the utility removes
the intentions list, thereby backing
out the transaction. The impact of
crash recovery on the buffer pool
manager is the following.

The page on which the commit
flag exists must be forced to disk
after all pages in the intentions list.
Moreover, the transaction is not re-
liably committed until the commit
flag is forced out to the disk, and no
response can be given to the person
submitting the transaction until this
time.

The service required from an OS
buffer manager is a selected force out
which would push the intentions list
and the commit flag to disk in the
proper order. Such a service is not
present in any buffer manager
known to us.

413 Communications
of
the ACM

July 1981
Volume 24
Number 7

COMPUTING
PRACTICES

2.5 Summary
Although it is possible to provide

an OS buffer manager with the re-
quired features, none currently ex-
ists, at least to our knowledge. De-
signing such a facility with prefetch
advice, block management advice,
and selected force out would be an
interesting exercise. It would be of
interest in the context of both a
paged virtual memory and an ordi-
nary file system.

The strategy used by most
DBMSs (for example, System R [4]
and IMS [8]) is to maintain a sepa-
rate cache in user space. This buffer
pool is managed by a DBMS specific
algorithm to circumvent the prob-
lems mentioned in this section. The
result is a "not quite right" service
provided by the OS going unused
and a comparable application spe-
cific service being provided by the
DBMS. Throughout this paper we
will see variations on this theme in
several service delivery areas.

3. The File System
The file system provided by

UNIX supports objects (files) which
are character arrays of dynamically
varying size. On top of this abstrac-
tion, a DBMS can provide whatever
higher level objects it wishes.

This is one of two popular ap-
proaches to file systems; the second
is to provide a record management
system inside the OS (e.g., RMS-11
for DEC machines or Enscribe for
Tandem machines). In this approach
structured files are provided (with or
without variable length records).
Moreover, efficient access is often
supported for fetching records cor-
responding to a user supplied value
(or key) for a designated field or
fields. Multilevel directories, hash-
ing, and secondary indexes are often
used to provide this service.

The point to be made in this sec-
tion is that the second service, which
is what a DBMS wants, is not always
efficient when constructed on top of

414

a character array object. The follow-
ing subsections explain why.

3.1 Physical Contiguity
The character array object can

usually be expanded one block at a
time. Often the result is blocks of a
given file scattered over a disk vol-
ume. Hence, the next logical block in
a file is not necessarily physically
close to the previous one. Since a
DBMS does considerable sequential
access, the result is considerable disk
arm movement.

The desired service is for blocks
to be stored physically contiguous
and a whole collection to be read
when sequential access is desired.
This naturally leads a DBMS to pre-
fer a so-called extent based file sys-
tem (e.g., VSAM [11]) to one which
scatters blocks. Of course, such files
must grow an extent at a time rather
than a block at a time.

3.2 Tree Structured File Systems
UNIX implements two services

by means of data structures which
are trees. The blocks in a given file
are kept track of in a tree (of indirect
blocks) pointed to by a file control
block (/-node). Second, the files in a
given mounted file system have a
user visible hierarchical structure
composed of directories, subdirecto-
ties, etc. This is implemented by a
second tree. A DBMS such as
INGRES then adds a third tree
structure to support keyed access via
a multilevel directory structure (e.g.,
ISAM [7], B-trees [1, 12], VSAM
[11], etc.).

Clearly, one tree with all three
kinds of information is more efficient
than three separately managed trees.
The extra overhead for three sepa-
rate trees is probably substantial.

3.3 Summary
It is clear that a character array

is not a useful object to a DBMS.
Rather, it is the abstraction presum-
ably desired by language processors,
editors, etc. Instead of providing rec-
ords management on top of character
arrays, it is possible to do the con-
verse; the only issue is one of effi-
ciency. Moreover, editors can possi-
bly use records management struc-

Communica t ions
o f
the AC M

tures as efficiently as those they cre-
ate themselves [2]. It is our feeling
that OS designers should contem-
plate providing DBMS facilities as
lower level objects and character ar-
rays as higher level ones. This phi-
losophy has already been presented
[5].

4. Scheduling, Process
Management, and Interprocess
Communication

Often, the simplest way to orga-
nize a multiuser database system is
to have one OS process per user; i.e.,
each concurrent database user runs
in a separate process. It is hoped that
all users will share the same copy of
the code segment of the database
system and perhaps one or more data
segments. In particular, a DBMS
buffer pool and lock table should be
handled as a shared segment. The
above structure is followed by Sys-
tem R and, in part, by INGRES.
Since UNIX has no shared data seg-
ments, INGRES must put the lock
table inside the operating system and
provide buffering private to each
user.

The alternative organization is to
allocate one run-time database pro-
cess which acts as a server. A l l c o n -

current users send messages to this
server with work requests. The one
run-time server schedules requests
through its own mechanisms and
may support its own multitasking
system. This organization is followed
by Enscribe [21]. Figure 2 shows
both possibilities.

Although Lauer [14] points out
that the two methods are equally
viable in a conceptual sense, the de-
sign of most operating systems
strongly favors the first approach.
For example, UNIX contains a mes-
sage system (pipes) which is incom-
patible with the notion of a server
process. Hence, it forces the use of
the first alternative. There are at least
two problems with the process-per-
user approach.

4.1 Performance
Every time a run-time database

process issues an I /O request that
cannot be satisfied by data in the
buffer pool, a task switch is inevita-

July 1981
Volume 24
N u m b e r 7

user 1

DBMS
process

0 0 0

user k

I DBMS
process

user 1

\
0 0 0 user k

, /
DBMS I

process

Process-Per-User Server DBMS
Structure Structure

Fig. 2. Two Approaches to Organizing a Multiuser Database System.

ble. The DBMS suspends while wait-
ing for required data and another
process is run. It is possible to make
task switches very efficiently, and
some operating systems can perform
a task switch in a few hundred in-
structions. However, many operating
systems have "large" processes, i.e.,
ones with a great deal of state infor-
mation (e.g., accounting) and a so-
phisticated scheduler. This tends to
cause task switches costing a thou-
sand instructions or more. This is a
high price to pay for a buffer pool
miss.

4.2 Critical Sections
Blasgen [3] has pointed out that

some DBMS processes have critical
sections. If the buffer pool is a shared
data segment, then portions of the
buffer pool manager are necessarily
critical sections. System R handles
critical sections by setting and releas-
ing short-term locks which basically
simulate semaphores. A problem
arises if the operating system sched-
uler deschedules a database process
while it is holding such a lock. All
other database processes cannot ex-
ecute very long without accessing the
buffer pool. Hence, they quickly
queue up behind the locked resource.
Although the probability of this oc-
curring is low, the resulting convoy
[3] has a devastating effect on per-
formance.

415

As a result of these two problems
with the process-per-user model, one
might expect the server model to be
especially attractive. The following
subsection explores this point of
view.

4.3 The Server Model
A server model becomes viable if

the operating system provides a mes-
sage facility which allows n processes
to originate messages to a single des-
tination process. However, such a
server must do its own scheduling
and multitasking. This involves a
painful duplication of operating sys-
tem facilities. In order to avoid such
duplication, one must resort to the
following tactics.

One can avoid multitasking and
a scheduler by a first-come-first-
served server with no internal paral-
lelism. A work request would be read
from the message system and exe-
cuted to completion before the next
one was started. This approach
makes little sense if there is more
than one physical disk. Each work
request will tend to have one disk
read outstanding at any instant.
Hence, at most one disk will be active
with a non-multitasking server. Even
with a single disk, a long work re-
quest will be processed to completion
while shorter requests must wait. The
penalty on average response time
may be considerable [18].

Communica t ions
o f
the A C M

To achieve internal parallelism
yet avoid multitasking, one could
have user processes send work re-
quests to one of perhaps several com-
mon servers as noted in Figure 3.
However, such servers would have to
share a lock table and are only
slightly different from the shared
code process-per-user model. Alter-
nately, one could have a collection
of servers, each of which would send
low-level requests to a group of disk
processes which actually peform the
I /O and handle locking as suggested
in Figure 4. A disk process would
process requests in first-in-first-out
order. Although this organization
appears potentially desirable, it still
may have the response time penalty
mentioned above. Moreover, it re-
suits in one message per I /O request.
In reality one has traded a task
switch per I / 0 for a message per
I /O; the latter may turn out to be
more expensive than the former. In
the next subsection, we discuss mes-
sage costs in more detail.

4.4 Performance of Message
Systems

Although we have never been of-
fered a good explanation of why
messages are so expensive, the fact
remains that in most operating sys-
tems the cost for a round-trip mes-
sage is several thousand instructions.
For example, in PDP-11/70 UNIX
the number is about 5,000. As a re-
suit, care must be exercised in a
DBMS to avoid overuse of a facility
that is not cheap. Consequently, vi-
able DBMS organizations will some-
times be rejected because of exces-
sive message overhead.

4.5 Summary
There appears to be no way out

of the scheduling dilemma; both the
server model and the individual pro-
cess model seem unattractive. The
basic problem is at least, in part, the
overhead in some operating systems
of task switches and messages. Either
operating system designers must
make these facilities cheaper or pro-
vide special fast path functions for
DBMS consumers. I f this does not
happen, DBMS designers will pre-
sumably continue the present prac-

July 1981
Volume 24
N u m b e r 7

COMPUTING
PRACTICES

tice: implementing their own multi-
tasking, scheduling, and message
systems entirely in user space. The
result is a "mini" operating system
running in user space in addition to
a DBMS.

One ultimate solution to task-
switch overhead might be for an op-
erating system to create a special
scheduling class for the DBMS and
other "favored" users. Processes in
this class would never be forcibly
descheduled but might voluntarily
relinquish the CPU at appropriate
intervals. This would solve the con-
voy problem mentioned in Section
4.2. Moreover, such special processes
might also be provided with a fast
path through the task switch/sched-
uler loop to pass control to one of
their sibling processes. Hence, a
DBMS process could pass control to
another DBMS process at low over-
head.

5. Consistency Control
The services provided by an op-

erating system in this area include
the ability to lock objects for shared
or exclusive access and support for
crash recovery. Although most op-
erating systems provide locking for
files, there are fewer which support
finer granularity locks, such as those
on pages or records. Such smaller
locks are deemed essential in some
database environments.

Moreover, many operating sys-
tems provide some cleanup after
crashes. If they do not offer support
for database transactions as dis-
cussed in Section 2.4, then a DBMS
must provide transaction crash re-
covery on top of whatever is sup-
plied.

It has sometimes been suggested
that both concurrency control and
crash recovery, for transactions be
provided entirely inside the operat-
ing system (e.g., [13]). Conceptually,
they should be at least as efficient as
if provided in user space. The only
problem with this approach is buffer

416

Fig. 3. Server Pool Structure.

user 1 0 0 0 user k

/
DBMS

process
DBMS

p r o c e s s y

disk

management. If a DBMS provides
buffer management in addition to
whatever is supplied by the operating
system, then transaction manage-
ment by the operating system is im-
pacted as discussed in the following
subsections.

5.1 Commit Point

When a database transaction
commits, a user space buffer man-
ager must ensure that all appropriate
blocks are flushed and a commit de-
livered to the operating system.
Hence, the buffer manager cannot be
immune from knowledge of trans-
actions, and operating system func-
tions are duplicated.

5.2 Ordering Dependencies
Consider the following employee

data:

Empname Salary Manager
Smith 10,000 Brown
Jones 9,000 None
Brown 11,000 Jones

and the update which gives a 20%
pay cut to all employees who earn
more than their managers. Presum-
ably, Brown will be the only em-

Communications
of
the ACM

user 1

I
/

disk
process

0 0 0 user k

/
DBMS

process

000

\
disk

process

Fig. 4. Disk Server Structure.

ployee to receive a decrease, al-
though there are alternative semantic
definitions.

Suppose the DBMS updates the
data set as it finds "overpaid" em-
ployees, depending on the operating
system to provide backout or re-
cover-forward on crashes. If so,

July 1981
Volume 24
Number 7

DBMS run-time code

run-time data

file F1

file F2

Fig. 5. Binding
Space.

user process
Files in to an Address

Brown might be updated before
Smith was examined, and as a result,
Smith would also receive the pay cut.
It is clearly undesirable to have the
outcome of an update depend on the
order of execution.

If the operating system maintains
the buffer pool and an intentions list
for crash recovery, it can avoid this
problem [19]. However, if there is a
buffer pool manager in user space, it
must maintain its own intentions list
in order to properly process this up-
date. Again, operating system facili-
ties are being duplicated.

5.3 Summary
It is certainly possible to have

buffering, concurrency control, and
crash recovery all provided by the
operating system. In order for the
system to be successful, however, the
performance problems mentioned in
Section 2 must be overcome. It is
also reasonable to consider having
all 3 services provided by the DBMS
in user space. However, if buffering
remains in user space and consis-
tency control does not, then much
code duplication appears inevitable.
Presumably, this will cause perform-
ance problems in addition to in-
creased human effort.

6. Paged Virtual Memory

It is often claimed that the appro-
priate operating system tactic for
database management support is to
bind files into a user's paged virtual

417

address space. In Figure 5 we show
the address space of a process con-
taining code to be executed, data that
the code uses, and the files F1 and
F2. Such files can be referenced by
a program as if they are program
variables. Consequently, a user never
needs to do explicit reads or writes;
he can depend on the paging facili-
ties of the OS to move his file blocks
into and out of main memory. Here,
we briefly discuss the problems in-
herent in this approach.

6.1 Large Files

Any virtual memory scheme
must handle files which are large
objects. Popular paging hardware
creates an overhead of 4 bytes per
4,096-byte page. Consequently, a
100M-byte file will have an overhead
of 100K bytes for the page table.
Although main memory is decreas-
ing in cost, it may not be reasonable
to assume that a page table of this
size is entirely resident in primary
memory. Therefore, there is th e pos-
sibility that an I /O operation will
induce two page faults: one for the
page containing the page table for
the data in question and one on the
data itself. To avoid the second fault,
one must wire down a large page
table in main memory.

Conventional file systems include
the information contained in the
page table in a file control block.
Especially in extent-based file sys-
tems, a very compact representation
of this information is possible. A run
of 1,000 consecutive blocks can be
represented as a starting block and a
length field. However, a page table
for this information would store each
of the 1,000 addresses even though
each differs by just one from its pred-
ecessor. Consequently, a file control
block is usually made main memory
resident at the time the file is opened.
As a result, the second I /O need
never be paid.

The alternative is to bind chunks
of a file into one's address space. Not
only does this provide a multiuser
DBMS with a substantial bookkeep-
ing problem concerning whether
needed data is currently addressable,
but it also may require a number of

Communications
of
the ACM

bind-unbind pairs in a transaction.
Since the overhead of a bind is likely
to be comparable to that of a file
open, this may substantially slow
down performance.

It is an open question whether or
not novel paging organizations can
assist in solving the problems men-
tioned in this section.

6.2 Buffering
All of the problems discussed in

Section 2 concerning buffering (e.g.,
prefetch, non-LRU management,
and selected force out) exist in a
paged virtual memory context. How
they can be cleanly handled in this
context is another unanswered ques-
tion.

7. Conclusions
The bottom line is that operating

system services in many existing sys-
tems are either too slow or inappro-
pilate. Current DBMSs usually pro-
vide their own and make little or no
use of those offered by the operating
system. It is important that future
operating system designers become
more sensitive to DBMS needs.

A DBMS would prefer a small
efficient operating system with only
desired services. Of those currently
available, the so-called real-time op-
erating systems which efficiently
provide minimal facilities come clos-
est to this ideal. On the other hand,
most general-purpose operating sys-
tems offer all things to all people at
much higher overhead. It is our hope
that future operating systems will be
able to provide both sets of services
in one environment.
References

I. Bayer, R. Organization and maintenance
of large ordered indices. Proc. ACM-
SIGFIDET Workshop on Data Description
and Access, Houston, Texas, Nov. 1970. This
paper defines a particular form of a balanced
n-ary tree, called a B-tree. Algorithms to
maintain this structure on inserts and deletes
are presented. The original paper on this
popular file organization tactic.

2. Birss, E. Hewlett-Packard Corp., General
Syst. Div. (private communication).

3. Blasgen, M., et al. The convoy
phenomenon. Operating Systs. Rev. 13, 2
(April 1979), 20-25. This article points out
the problem with descheduling a process
which has a short-term lock on an object
which other processes require regularly. The
impact on performance is noted and possible
solutions proposed.

July 1981
Volume 24
Number 7

COMPUTING
PRACTICES

4. Blasgen, M., et al. System R: An
architectural update. Rep. RJ 2581, IBM
Res. Ctr., San Jose, Calif., July 1979. Blasgen
describes the architecture of System R, a
novel full function relational database
manager implemented at IBM Research. The
discussion centers on the changes made since
the original System R paper was published
in 1976.

5. Epstein, R., and Hawthorn, P. Design
decisions for the Intelligent Database
Machine. Proc. Nat. Comptr. Conf.,
Anaheim, Calif., May 1980, pp. 237-241. An
overview of the philosophy of the Intelligent
Database Machine is presented. This system
provides a database manager on a dedicated
"back end" computer which can be attached
to a variety of host machines.

6. Gray, J. Notes on operating systems.
Report RJ 3120, IBM Res. Ctr., San Jose,
Calif., Oct. 1978. A definitive report on
locking and recovery in a database system. It
pulls together most of the ideas on these
subjects including two-phase protocols, write
ahead log, and variable granularity locks.
Should be read every six months by anyone
interested in these matters.

7. IBM Corp. OS ISAM Logic. GY28-
6618, IBM, White Plains, N.Y., June
1966.

8. IBM Corp. IMS- VS General Information
Manual. GH20-1260, IBM, White Plains,
N.Y., April 1974.

9. Kaplan, J. Buffer management policies
in a database system. M.S. Th., Univ. of
Calif., Berkeley, Calif., 1980. This thesis
simulates various non-LRU buffer
management policies on traced data obtained
from the INGRES database system. It
concludes that the miss rate can be cut 10-
15% by a DBMS specific algorithm
compared to LRU management.

10. Kashtan, D. UNIX and VMS: Some
performance comparisons. SRI Internat.,
Menlo Park, Calif. (unpublished working
paper). Kashtan's paper contains benchmark
timings of operating system commands in
UNIX and VMS for DEC PDP-I 1/780
computers. These include timings of file
reads, event flags, task switches, and pipes.

I1. Keehn, D., and Lacy, J. VSAM data set
design parameters. IBM Systs. J. (Sept.
1974).

12. Knuth, D. The Art of Computer
Programming, Vol. 3: Sorting and Searching.
Addison Wesley, Reading, Mass., 1978.

13. Lampson, B., and Sturgis, H. Crash
recovery in a distributed system. Xerox Res.
Ctr., Palo Alto, Calif., 1976 (working paper).
The first paper to present the now popular
two-phase commit protocol. Also, an
interesting model of computer system crashes
is discussed and the notion of "safe" storage
suggested.

14. Lauer, H., and Needham, R. On the
duality of operating system structures.
Operating Systs. Rev. 13, 2 (April 1979), 3-
19. This article explores in detail the
"process-per-user" approach to operating
systems versus the "server model." It argues
that they are inherently dual of each other
and that either should be implementable as
efficiently as the other. Very interesting
reading.

15. Mattson, R., et al. Evaluation techniques
for storage hierarchies. IBM Systs. J. (June
1970). Discusses buffer management in
detail. The paper presents and analyzes
serveral policies including FIFO, LRU, OPT,
and RANDOM.

16. Redell, D., et al. Pilot: An operating
system for a personal computer. Comm.
ACM 23, 2 (Feb. 1980), 81-92. Redell et al.
focus on Pilot, the operating system for
Xerox Alto computers. It is closely coupled
with Mesa and makes interesting choices in
areas like protection that are appropriate for
a personal computer.

17. Ritchie, D., and Thompson, K. The
UNIX time-sharing system. Comm. ACM 17,
7 (July 1974), 365-375. The original paper
describing UNIX, an operating system for
PDP- 11 computers. Novel points include
accessing files, physical devices, and pipes in
a uniform way and running the command-
line interpreter as a user program. Strongly
recommended reading.

18. Shaw, A. The Logical Design of
Operating Systetms. Prentice-Hall,
Englewood Cliffs, N.J. 1974.

19. Stonebraker, M., et al. The design and
implementation of INGRES. A CM Trans.
Database Systs. 1, 3 (Sept. 1976), 189-222.
The original paper describing the structure
of the INGRES database management
system, a relational data manager for PDP-
11 computers.

20. Stonebraker, M. Retrospection on a
database system. A CM Trans. Database
Systs. 5, 2 (June 1980), 225-240. A self-
critique of the INGRES system by one of its
designers. The article discusses design flaws
in the system and indicates the historical
progression of the project.

21. Tandem Computers. Enscribe Reference
Manual. Tandem, Cupertino, Calif., Aug.
1979.

418 Communications
of
the ACM"

July 1981
Volume 24
Number 7

